organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-(p-toluenesulfonamido)benzoate

Guang-You Zhang,^a Di-Juan Chen,^a* Xiang-Yang Guo,^b Shu-Hong Wang^a and Jian-Guo Chang^c

^aDepartment of Materials Science and Engineering, University of Jinan, Jinan 250022, People's Republic of China, ^bSchool of Chemistry and Chemical Engineering. University of Jinan, Jinan 250022, People's Republic of China, and CDepartment of Materials Science and Chemical Engineering, Taishan University, Taishan 271021, People's Republic of China

Correspondence e-mail: 153725248@163.com

Received 2 December 2009; accepted 7 January 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.102; data-to-parameter ratio = 13.8.

The title compound, C₁₅H₁₅NO₄S, was prepared by simple condensation of methyl 2-aminobenzoate and 4-methylbenzenesulfonyl chloride. The dihedral angle between the benzene rings is $84.36~(6)^\circ$. The molecular structure is stabilized by an intramolecular N-H···O hydrogen-bonding interaction involving the carbonyl group as acceptor, generating an S(6) graph-set motif.

Related literature

For background information on sulfonamide derivatives and their properties, see: Sheppard et al. (2006). For similar structures, see: Schultz et al. (2001); Krishnaiah et al. (1995); Arshad, Khan, Shafiq et al. (2009); Arshad, Khan, Akkurt et al. (2009); Xiong et al. (2007).

Experimental

Crystal data $C_{15}H_{15}NO_4S$ $M_r = 305.34$

Monoclinic, $P2_1/c$ a = 15.0129 (13) Å

b = 8.3593 (7) Å	
c = 11.9664 (11) Å	
$\beta = 96.854 \ (2)^{\circ}$	
V = 1491.0 (2) Å ³	
Z = 4	

Data collection

Bruker APEXII area-detector	7663 measured reflections
diffractometer	2639 independent reflections
Absorption correction: multi-scan	2230 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.024$
$T_{\min} = 0.947, \ T_{\max} = 0.968$	
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.036$	191 parameters
$wR(F^2) = 0.102$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
2639 reflections	$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$

 $0.24 \times 0.16 \times 0.14$ mm

T = 295 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O2	0.87	1.89	2.640 (2)	143

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful to the Natural Science Foundation of Shandong Province, China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Taishan University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2263).

References

- Arshad, M. N., Khan, I. U., Akkurt, M., Shafiq, M. & Mustafa, G. (2009). Acta Cryst. E65, 01610-01611.
- Arshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, 0549
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Krishnaiah, M., Narayana Raju, K. V., Lu, I.-L., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2429-2430.
- Schultz, T. W., Sinks, G. D. & Miller, L. A. (2001). Environ. Toxicol. 16, 543-549
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheppard, G. S. et al. (2006). J. Med. Chem. 49, 3832-3849.
- Xiong, J., Cai, X.-Q., Yin, P. & Hu, M.-L. (2007). Acta Phys. Chim. Sin. 23, 1183-1188

supplementary materials

Acta Cryst. (2010). E66, o346 [doi:10.1107/S1600536810000814]

Methyl 2-(p-toluenesulfonamido)benzoate

G.-Y. Zhang, D.-J. Chen, X.-Y. Guo, S.-H. Wang and J.-G. Chang

Comment

Sulfur-containing compounds, such as sulfates, sulfones, thiols, sulfonamides and sulfoxides can exhibit insecticidal, germicidal or antimicrobial activities (Schultz *et al.*, 2001; Krishnaiah *et al.*, 1995; Arshad, Khan, Shafiq *et al.*, 2009; Xiong *et al.*, 2007). Particularly, the sulfonamides are biologically active organic compounds, which have been investigated as inhibitors of methionine aminopeptidase-2 (MetAP2) and intermediates for cancer therapy (Sheppard *et al.*, 2006). In order to obtain detailed information on the molecular conformation, the X-ray study of the title sulfonamide has been carried out, and the results are presented here.

As is shown in Fig. 1, the two benzene rings are approximately orthogonal, the dihedral angle between their planes being 84.36 (6)°. In addition to van der Waals interactions, there is an intramolecular N—H···O hydrogen bond which generates a graph set motif S(6) (Arshad, Khan, Akkurt *et al.*, 2009) to stabilize the molecular conformation (Fig. 1 and Table 1).

Experimental

Methyl 2-aminobenzoate (5 mmol) was dissolved in tetrahydrofuran (10 ml) in a round bottom flask (50 ml). The pH of the solution was maintained at 7–8 using Et_3N . 4-Toluene sulfonyl chloride (6 mmol) was suspended to the above solution and refluxed until all the 4-toluene sulfonyl chloride was consumed. After removal of the solvent, water (20 ml) was added to the residue. Then the mixture was extracted with CH_2Cl_2 , and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by recrystallization in ethanol to give a solid (yield 83.7%). Single crystals suitable for X-ray analysis were obtained by diffusion of *n*-hexane in an ethanol solution.

Refinement

All C-bonded H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic) or 0.96 Å (methyl). Amine H atom H1 was found in a difference map, and its position fixed in final cycles. Isotropic displacement parameters for H atoms were calculated as $U_{iso}(H) = 1.5U_{eq}(\text{carrier C}, N)$ for methyl H atoms and H1, and $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$ for others.

Figures

Fig. 1. The structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dashed line represents a hydrogen bond.

Methyl 2-(p-toluenesulfonamido)benzoate

Crystal data

C₁₅H₁₅NO₄S $M_r = 305.34$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.0129 (13) Å b = 8.3593 (7) Å c = 11.9664 (11) Å $\beta = 96.854$ (2)° V = 1491.0 (2) Å³ Z = 4

Data collection

Bruker APEXII area-detector diffractometer	2639 independent reflections
Radiation source: fine-focus sealed tube	2230 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\text{max}} = 25.1^\circ, \ \theta_{\text{min}} = 2.7^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$h = -16 \rightarrow 17$
$T_{\min} = 0.947, \ T_{\max} = 0.968$	$k = -9 \rightarrow 9$
7663 measured reflections	$l = -14 \rightarrow 9$

F(000) = 640

 $\theta = 2.3 - 27.0^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$

Block, colourless

 $0.24 \times 0.16 \times 0.14 \text{ mm}$

T = 295 K

 $D_{\rm x} = 1.360 {\rm Mg m}^{-3}$

Melting point: 380 K

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3425 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.102$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0512P)^2 + 0.3683P]$ where $P = (F_o^2 + 2F_c^2)/3$
2639 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
191 parameters	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.78611 (3)	0.16418 (5)	0.77097 (4)	0.04976 (17)
01	0.56582 (10)	0.0349 (2)	0.36179 (12)	0.0866 (5)

O2	0.61287 (10)	0.2115 (2)	0.49515 (14)	0.0784 (4)
03	0.80078 (9)	0.05619 (17)	0.86305 (10)	0.0642 (4)
04	0.76453 (10)	0.32689 (16)	0.79146 (12)	0.0677 (4)
N1	0.70193 (9)	0.10160 (18)	0.68303 (13)	0.0536 (4)
H1	0.6798	0.1762	0.6367	0.082 (7)*
C1	0.52814 (17)	0.1643 (4)	0.2920 (2)	0.1100 (11)
H1A	0.4763	0.2057	0.3221	0.165*
H1B	0.5111	0.1258	0.2169	0.165*
H1C	0.5720	0.2477	0.2906	0.165*
C2	0.60786 (12)	0.0751 (3)	0.46213 (17)	0.0623 (5)
C3	0.64536 (11)	-0.0668 (2)	0.52490 (15)	0.0524 (4)
C4	0.69256 (10)	-0.0513 (2)	0.63324 (14)	0.0474 (4)
C5	0.72532 (13)	-0.1874 (2)	0.68995 (18)	0.0604 (5)
Н5	0.7568	-0.1781	0.7615	0.072*
C6	0.71195 (15)	-0.3359 (2)	0.6419 (2)	0.0748 (6)
H6	0.7343	-0.4261	0.6812	0.090*
C7	0.66594 (16)	-0.3525 (3)	0.5364 (2)	0.0810(7)
H7	0.6571	-0.4534	0.5042	0.097*
C8	0.63345 (15)	-0.2203 (3)	0.47946 (19)	0.0716 (6)
H8	0.6023	-0.2324	0.4080	0.086*
C9	0.88094 (11)	0.16066 (19)	0.69848 (13)	0.0436 (4)
C10	0.88227 (13)	0.2541 (2)	0.60377 (15)	0.0556 (5)
H10	0.8323	0.3146	0.5766	0.067*
C11	0.95774 (14)	0.2569 (3)	0.55021 (16)	0.0626 (5)
H11	0.9585	0.3201	0.4864	0.075*
C12	1.03322 (12)	0.1678 (2)	0.58876 (16)	0.0581 (5)
C13	1.03009 (13)	0.0749 (2)	0.68292 (17)	0.0623 (5)
H13	1.0800	0.0144	0.7101	0.075*
C14	0.95457 (12)	0.0694 (2)	0.73804 (15)	0.0541 (4)
H14	0.9533	0.0048	0.8011	0.065*
C15	1.11567 (15)	0.1736 (3)	0.5291 (2)	0.0877 (8)
H15A	1.1455	0.2744	0.5438	0.132*
H15B	1.0988	0.1620	0.4495	0.132*
H15C	1.1555	0.0883	0.5557	0.132*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0530 (3)	0.0496 (3)	0.0468 (3)	-0.00029 (19)	0.00665 (19)	-0.00452 (18)
01	0.0675 (9)	0.1255 (14)	0.0618 (9)	-0.0107 (9)	-0.0128 (7)	0.0207 (9)
O2	0.0743 (10)	0.0717 (10)	0.0861 (11)	0.0118 (8)	-0.0036 (8)	0.0221 (9)
O3	0.0755 (9)	0.0734 (9)	0.0435 (7)	-0.0095 (7)	0.0067 (6)	0.0063 (6)
O4	0.0695 (9)	0.0557 (8)	0.0801 (9)	0.0029 (6)	0.0177 (7)	-0.0180 (7)
N1	0.0498 (8)	0.0470 (8)	0.0620 (9)	0.0048 (7)	-0.0016 (7)	-0.0006 (7)
C1	0.0695 (15)	0.170 (3)	0.0853 (17)	-0.0053 (16)	-0.0123 (13)	0.0621 (19)
C2	0.0391 (9)	0.0881 (16)	0.0591 (12)	-0.0040 (10)	0.0037 (8)	0.0139 (11)
C3	0.0395 (9)	0.0634 (11)	0.0542 (10)	-0.0029 (8)	0.0053 (7)	0.0010 (9)
C4	0.0382 (8)	0.0497 (10)	0.0549 (10)	0.0001 (7)	0.0078 (7)	-0.0011 (8)

supplementary materials

C5	0.0592 (11)	0.0540 (11)	0.0657 (12)	0.0030 (9)	-0.0018 (9)	0.0046 (9)
C6	0.0740 (14)	0.0486 (12)	0.1004 (17)	0.0041 (10)	0.0046 (13)	0.0025 (11)
C7	0.0807 (15)	0.0570 (13)	0.1052 (19)	-0.0042 (11)	0.0099 (14)	-0.0210 (13)
C8	0.0667 (13)	0.0823 (15)	0.0642 (13)	-0.0117 (11)	0.0007 (10)	-0.0163 (11)
C9	0.0478 (9)	0.0432 (9)	0.0384 (8)	0.0004 (7)	-0.0004 (7)	-0.0031 (7)
C10	0.0557 (11)	0.0626 (12)	0.0470 (10)	0.0063 (9)	0.0004 (8)	0.0076 (8)
C11	0.0692 (13)	0.0724 (14)	0.0463 (10)	-0.0107 (10)	0.0077 (9)	0.0042 (9)
C12	0.0525 (11)	0.0652 (12)	0.0572 (11)	-0.0128 (9)	0.0091 (9)	-0.0235 (9)
C13	0.0495 (11)	0.0650 (12)	0.0705 (13)	0.0103 (9)	-0.0010 (9)	-0.0100 (10)
C14	0.0588 (11)	0.0532 (11)	0.0484 (10)	0.0087 (8)	-0.0013 (8)	0.0033 (8)
C15	0.0654 (14)	0.109 (2)	0.0933 (17)	-0.0258 (13)	0.0296 (12)	-0.0401 (15)

Geometric parameters (Å, °)

S1—O3	1.4212 (13)	С6—Н6	0.9300
S1—O4	1.4262 (14)	С7—С8	1.358 (3)
S1—N1	1.6311 (15)	С7—Н7	0.9300
S1—C9	1.7535 (17)	C8—H8	0.9300
O1—C2	1.331 (2)	C9—C10	1.379 (2)
O1—C1	1.440 (3)	C9—C14	1.380 (2)
O2—C2	1.206 (3)	C10—C11	1.367 (3)
N1—C4	1.410 (2)	C10—H10	0.9300
N1—H1	0.8734	C11—C12	1.388 (3)
C1—H1A	0.9600	C11—H11	0.9300
C1—H1B	0.9600	C12—C13	1.374 (3)
C1—H1C	0.9600	C12—C15	1.502 (3)
C2—C3	1.479 (3)	C13—C14	1.379 (3)
C3—C8	1.397 (3)	C13—H13	0.9300
C3—C4	1.407 (2)	C14—H14	0.9300
C4—C5	1.385 (2)	C15—H15A	0.9600
C5—C6	1.373 (3)	C15—H15B	0.9600
С5—Н5	0.9300	C15—H15C	0.9600
C6—C7	1.372 (3)		
03—81—04	119.33 (9)	C8—C7—C6	119.4 (2)
O3—S1—N1	109.45 (8)	С8—С7—Н7	120.3
O4—S1—N1	104.03 (8)	С6—С7—Н7	120.3
O3—S1—C9	108.24 (8)	C7—C8—C3	122.0 (2)
O4—S1—C9	108.40 (8)	С7—С8—Н8	119.0
N1—S1—C9	106.73 (8)	С3—С8—Н8	119.0
C2-01-C1	116.4 (2)	C10—C9—C14	120.39 (17)
C4—N1—S1	126.43 (12)	C10—C9—S1	119.30 (13)
C4—N1—H1	111.6	C14—C9—S1	120.27 (13)
S1—N1—H1	112.8	C11—C10—C9	119.29 (17)
O1—C1—H1A	109.5	C11—C10—H10	120.4
O1—C1—H1B	109.5	C9—C10—H10	120.4
H1A—C1—H1B	109.5	C10-C11-C12	121.63 (18)
O1—C1—H1C	109.5	C10-C11-H11	119.2
H1A—C1—H1C	109.5	C12—C11—H11	119.2
H1B—C1—H1C	109.5	C13—C12—C11	117.99 (17)

O2—C2—O1	122.6 (2)	C13—C12—C15	121.3 (2)
O2—C2—C3	125.93 (19)	C11—C12—C15	120.7 (2)
O1—C2—C3	111.5 (2)	C12—C13—C14	121.46 (18)
C8—C3—C4	118.07 (18)	С12—С13—Н13	119.3
C8—C3—C2	121.06 (18)	C14—C13—H13	119.3
C4—C3—C2	120.86 (17)	C13—C14—C9	119.23 (17)
C5—C4—C3	119.06 (17)	C13—C14—H14	120.4
C5—C4—N1	121.75 (16)	C9—C14—H14	120.4
C3—C4—N1	119.14 (16)	С12—С15—Н15А	109.5
C6—C5—C4	120.82 (19)	С12—С15—Н15В	109.5
С6—С5—Н5	119.6	H15A—C15—H15B	109.5
C4—C5—H5	119.6	C12—C15—H15C	109.5
C7—C6—C5	120.6 (2)	H15A—C15—H15C	109.5
С7—С6—Н6	119.7	H15B—C15—H15C	109.5
С5—С6—Н6	119.7		
O3—S1—N1—C4	-53.87 (17)	C6—C7—C8—C3	0.0 (4)
O4—S1—N1—C4	177.55 (15)	C4—C3—C8—C7	-0.1 (3)
C9—S1—N1—C4	63.05 (16)	C2—C3—C8—C7	-178.8 (2)
C1—O1—C2—O2	1.7 (3)	O3—S1—C9—C10	178.84 (13)
C1—O1—C2—C3	-178.72 (17)	O4—S1—C9—C10	-50.38 (16)
O2—C2—C3—C8	178.3 (2)	N1—S1—C9—C10	61.13 (15)
O1—C2—C3—C8	-1.3 (2)	O3—S1—C9—C14	-3.30 (16)
O2—C2—C3—C4	-0.4 (3)	O4—S1—C9—C14	127.47 (15)
O1—C2—C3—C4	-179.97 (15)	N1—S1—C9—C14	-121.02 (14)
C8—C3—C4—C5	0.2 (3)	C14—C9—C10—C11	-0.8 (3)
C2—C3—C4—C5	178.93 (16)	S1—C9—C10—C11	177.06 (14)
C8—C3—C4—N1	-177.13 (16)	C9—C10—C11—C12	0.1 (3)
C2—C3—C4—N1	1.6 (2)	C10-C11-C12-C13	0.3 (3)
S1—N1—C4—C5	34.0 (2)	C10-C11-C12-C15	-179.53 (18)
S1—N1—C4—C3	-148.77 (14)	C11-C12-C13-C14	0.1 (3)
C3—C4—C5—C6	-0.2 (3)	C15-C12-C13-C14	179.90 (18)
N1—C4—C5—C6	177.03 (18)	C12-C13-C14-C9	-0.8 (3)
C4—C5—C6—C7	0.1 (3)	C10-C9-C14-C13	1.2 (3)
C5—C6—C7—C8	0.0 (4)	S1—C9—C14—C13	-176.68 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
N1—H1…O2	0.87	1.89	2.640 (2)	143.

